USE OF LICORICE EXTRACT IN COUNTERACTING AFLATOXINOSIS IN BROILERS

H. J. Al-Darajji I. A. Al-Ani J. K. Minati H. E. Al-Hitte
Dept. of Animal Res., College of Agric. - Univ. of Baghdad State Board for Agric. Res. Min. of Agriculture

ABSTRACT

This study was conducted at the Animal Production Farm, State Board for Agricultural Research over the period from 21/3/2002 to 27/4/2002. A total of 600 commercial broilers, three weeks old were used to investigate the probable role of licorice extract in suppressing the detrimental effects of aflatoxicosis on productive performance of broilers. Chickens were randomly allotted to 6 treatments of 3 replicates. Birds in the first treatment (T1) were fed a basal diet and used as control group. Birds in T2 treatment were fed a diet contaminated with aflatoxin while birds in T3 treatment were fed a diet contaminated with aflatoxin and treated with modl killer. However, birds in T4, T5 and T6 treatments were fed a diet contaminated with aflatoxin and supplemented with licorice extract at the levels of 150, 300 and 450 mg/kg diet, respectively.

Inclusion of the ascorbic acid in the diet resulted in a significant (p<0.05) decrease in body weight, weight gain, feed consumption, feed conversion efficiency, Productive Index, Economic Figure, dressing percentage with or without additional an extended diet, spleen, liver, and kidney which increased in abdominal fat. When modl killer (T3) or licorice extract (T4, T5 and T6) were incorporated into the diet containing aflatoxin, they significantly (p<0.05) improved all these traits. However, licorice treatments surpassed T3 as regards five body weight, weight gain, Productive Index and Economic Figure. Furthermore, there was a trend that T6 recorded the best results as in productive characteristics included in this study in comparison with T3, T5 and T7 treatments.

It was concluded from this study that supplementation of licorice extract particularly at a level of 450 mg/kg diet to the diet contaminated with aflatoxin may depress the adverse effects of aflatoxicosis on productive performance of broiler chickens.

(*) Accept by 1/12/2004; Received on 12/4/2004
Introduction

The aflatoxin-producing fungi have been found in large variety of commodities. Condition favoring their growth and toxin production are: high moisture content, high temperature, insect damage, and the physical condition of the grain, weathering, mechanical handling and presence of cracked grains (13). Reddy et al. (15) reported that infestation of feeds with aflatoxins causes increased mortality, decreased growth rate and poor feed conversion in broiler chickens. However, aflatoxin was demonstrated to produce in broiler chicken a steatorrhoea accompanied by a decrease in digestive enzymes elaboration by pancreas (14). Giannone et al. (7) indicated that aflatoxin treatment resulted in increase in the susceptibility of broiler chickens to salmonellosis, aspergillosis, coccidiosis, and Marek's disease. The immune depressive action in aflatoxins was primarily on the cell-mediated immune system.

Aflatoxin is the common name for a group of structurally related compounds (aflatoxin B1, B2, G1, and G2) produced by fungi of the Aspergillus flavus group of the genus Aspergillus. This mycotoxin is potentially a threat to poultry health and production through contamination of poultry feeds (8). Al-Daraji (2) reported that experimentally induced aflatoxicosis resulted in significant deterioration in erythrocytes, leukocytes, thrombocytes, haemoglobin concentration, heterophil/lymphocyte ratio, hematocrit and plasma urea acid, glucose, cholesterol, protein calcium, phosphorus, GOT activity and alkaline phosphatase activity.

Liceeore excerts numerous beneficial effects on the body, making licorice a valuable herb for treating a host of ailments. It can help reduce inflammation. It seems to prevent the breakdown of adrenal hormones such as cortisol (the body's primary stress - fighting adrenal hormone), making these hormones more available to the body and helps the body cope with stress (20). Licorice also appears to enhance immunity by boosting levels of interferon, a key immune system chemical that fights off attacking viruses (6). However, licorice is also known to exhibit many pharmacological actions, including estrogenic activity, anti-inflammatory activity, anti-allergic, antibacterial, antiviral, antimycotic, fungistatic, antacid and anti-Trichomonas (12).

The present study was undertaken as a trial to suppress the effect of aflatoxicosis on productive performance of broiler chickens by using different levels of licorice extract. Licorice extract was supplemented at levels of 150, 300, and 450 mg/kg: to the diet of birds which was previously contaminated with aflatoxin.

Materials and Methods

This study was conducted at the Animal Production farm/State Board for Agricultural Research over the period from 2/1/2002 to 27/4/2002. A total of 900 Pambro broiler, three weeks of age were used. Birds were fed starter diet during the third week of age (beginning date of experiment; 22.7% crude protein and 2807.4 kcal/kg of diet) and finisher diet (20.6% crude protein and 2922 kcal/kg of diet) until the marketing age (49 days of age). Chicks were randomly divided into 6 treated groups of 3 replicate per group, each replicate constitutes 50 chicks (150 chicks per treatment group).

Birds in the first treatment fed a commercial broiler ration and used as a control group (T1). The second treatment (T2) was fed a diet contaminated with aflatoxin, while birds in the third treatment (T3) were fed a diet contaminated with aflatoxin and treated with mold killer (Choong Ang Biotech company, Korea). However, birds in fourth, fifth and sixth treatments were fed a diet contaminated with aflatoxin and supplemented with licorice extract. Licorice extract was supplemented to the diet of birds throughout the total period of experiment at levels of 150 mg/kg (T4), 300 mg/kg (T5) and 450 mg/kg of diet (T6).

Aflatoxin was used in the present study was aflatoxin B1 which obtained from the Department of Plant Protection, College of Agriculture, University of Baghdad. Aflatoxin was prepared and incorporated into basal diet by method previously reported (17). Aflatoxin was produced by growing Aspergillus flavus on rice. The moldy rice was dried and ground to a fine powder and analyzed spectrophotometrically for its total aflatoxin content by the method of Nabney and Nesbitt (10). The moldy rice then added to the yellow corn that involved in the basal diet. The final level of aflatoxin introduced to the birds was determined to be equal to 2 mg aflatoxin/kg of diet.

Productive characteristics measured in this study included: body weight, weight gain, feed consumption, feed conversion ratio, and mortality. However, Productive Index and Economic Figure were determined according to Naji and Hana (11). At the end of experiment, 18 birds per each treatment (6 birds per each replicate) were sacrificed to determine dressing percentage with or without

198
viscera, and weights of visceral organs, viz., liver, heart, gizzard, spleen, in addition to abdominal fat. Significance of data was determined at the 5% level of probability by analysis of variance (ANOVA) using the Statistical Analysis System (18). Significance of the differences between treatment means was determined by Duncan’s multiple range test (16).

Results and Discussion

Dietary aflatoxin (T2) significantly (P<0.05) depressed body weight, weight gain, feed consumption, feed conversion, Productive Index, Economic Figure, and livability starting from the fourth week of age through the seventh week of age in comparison with control group (T1: Figures 1, 2, 3, 4 and Table 1). When mold killer (T3) or licorice extract (T4, T5, and T6) were added to the diet containing aflatoxin, they significantly (P<0.05) increased these traits. However, T4, T5, and T6 surpassed T3 treatment as regards live body weight and weight gain (Figures 1 and 2). There were no significant differences between licorice treatments (T4, T5, and T6) and T3 throughout the experimental period with relation to feed conversion, efficiency, and mortality (Figure 4 and Table 1). Furthermore, there were no significant differences between licorice treatments and T3 treatment during 4th and 5th weeks of age, between T3, T4 and T5 treatments during the 6th week of age, and between T3 and T4 treatments during the 7th week of age in regard to feed consumption (Figure 3).

The addition of 450 mg/kg licorice extract to the diet containing aflatoxin restored the mean of live body weight, feed consumption, Productive Index and Economic Figure to the control values (Figures 1, 2, 3 and Table 1).

The results of this investigation clearly demonstrate that aflatoxins in broiler chickens can be influenced by supplementation the licorice extract to the contaminated diet. Increasing the licorice content of the diet to 450 mg/kg essentially negated the effects of aflatoxin. An obvious outcome of the protective effects of licorice is that licorice shows some anti-infective properties. In laboratory and animal studies, it has stopped or slowed down the growth of certain bacteria, fungi, and parasites. Several research studies have also revealed a possibly strong antiviral and fungicidal effects for true licorice (5). In these studies, true licorice component that belong to the isoflavonoid class of chemicals, appear to have several anti-infective effects that include interference with oxygen utilization by infective organisms. Additionally, true licorice may have some ability to improve functioning of the immune system (1, 18). Newell et al. (12) reported that medicinal use of licorice in both Western and Eastern cultures dates back several thousand years. Licorice is known to exhibit many pharmacological actions, including anti-inflammatory (cortisol-like), antiviral, antibacterial, antifungal, anti-Trichomonas, anti-inflammatory, and anti-allergy activities. The plant reinforces the body’s ability to withstand attack from virtually any kind of pathogen. However, if one is looking for a broad-spectrum tonic to protect, maintain health, and heal injuries, there is no herb better than licorice root. Usanomiyi et al. (20) indicated that modern research on licorice reports many effects which are adrenal enhancing, analgesic, anti-inflammatory, antioxidant, anti-tumor, antiviral, fungicidal, immune protecting, liver protecting and liver detoxifying. However, by functioning as anti-fungal agent, this herb destroys or prevent the growth of fungi.

Inclusion the aflatoxin in the diet (T2) resulted in a significant reduction in both dressing percentage with or without viscera compared with control group (T1; Table 1). However, the supplementation of mold killer (T3) and licorice extract (T4, T5, T6) to the aflatoxin – contaminated diet significantly improved these two traits in comparison with T2 treatment. T6 treatment surpasses other treatments in relation to dressing percentage with or without viscera and restores the means of these two traits to the control values.

The effects of different treatments on the relative weight of certain organs are presented in Table 1. With incorporation of aflatoxin into the diet (T2), visceral organs such as liver, heart, gizzard and spleen significantly (p<0.05) increased in comparison with control group (T1). However, administration of graded levels of licorice extract (T4, T5, T6) or mold killer (T3) resulted in significant reduction in the relative weight of these organs compared with T2 treatment. Furthermore, there was a trend that T6 recorded the lowest (p<0.05) means regarding the relative weights of liver, heart, gizzard and spleen comparing with other treatments (T2, T4 and T5).
Figure 1. The effect of different levels of licorice extract on mean body weight of broiler fed a diet contaminated with aflatoxin.

- T1: Birds fed a basal diet
- T2: Birds fed diet contaminated with aflatoxin
- T3: Birds fed diet contaminated with aflatoxin and treated with mold killer
- T4: Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 150 mg/kg
- T5: Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 300 mg/kg
- T6: Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 450 mg/kg
Figure 2: The effect of different levels of licorice extract on weight gain of birds fed a diet contaminated with aflatoxin

T1 = Birds fed a basal diet, T2 = Birds fed diet contaminated with aflatoxin, T3 = Birds fed diet contaminated with aflatoxin and treated with mold killer, T4 = Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 150 mg/kg, T5 = Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 300 mg/kg, T6 = Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 450 mg/kg.
Figure 3. The effect of different levels of licorice extract on feed consumption of broiler fed a diet contaminated with aflatoxin.

- Treatment T1: Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 100 mg/kg.
- Treatment T2: Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 150 mg/kg.
- Treatment T3: Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 200 mg/kg.

Legend:
- A: Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 100 mg/kg.
- B: Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 150 mg/kg.
- C: Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 200 mg/kg.
- D: Birds fed diet contaminated with aflatoxin and without licorice extract.

Age (Weeks)

Feed consumption (g/day)
Figure 4: The effect of different levels of licorice extract on feed conversion efficiency of broiler fed a diet contaminated with aflatoxin.

- T1 = Birds fed a basal diet.
- T2 = Birds fed diet contaminated with aflatoxin, T2=Birds fed diet contaminated with aflatoxin and treated with mold killer, T4 = Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 150 mg/kg, T5 = Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 300 mg/kg, T6 = Birds fed diet contaminated with aflatoxin and supplemented with licorice extract at level of 450 mg/kg.
<table>
<thead>
<tr>
<th>Treatments</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productive Index</td>
<td>A 195.28 ± 12.21</td>
<td>D 161.60 ± 15.69</td>
<td>C 180.55 ± 14.53</td>
<td>BC 183.14 ± 13.9</td>
<td>B 185.02 ± 14.03</td>
<td>AB 190.18 ± 12.71</td>
</tr>
<tr>
<td>Economic Figure</td>
<td>A 196.04 ± 13.47</td>
<td>D 162.14 ± 17.15</td>
<td>C 181.08 ± 15.32</td>
<td>BC 183.63 ± 16.01</td>
<td>B 185.49 ± 15.44</td>
<td>AB 191.01 ± 14.8</td>
</tr>
<tr>
<td>Total mortality (%)</td>
<td>C 1.39 ± 0.06</td>
<td>A 2.69 ± 0.11</td>
<td>B 1.62 ± 0.08</td>
<td>B 1.59 ± 0.08</td>
<td>B 1.48 ± 0.06</td>
<td>B 1.41 ± 0.05</td>
</tr>
<tr>
<td>Dressing percentage (with viscera)</td>
<td>A 72.81 ± 4.69</td>
<td>C 71.93 ± 7.33</td>
<td>B 72.55 ± 6.28</td>
<td>B 72.53 ± 6.19</td>
<td>B 72.74 ± 5.63</td>
<td>A 74.80 ± 4.82</td>
</tr>
<tr>
<td>Dressing percentage (without viscera)</td>
<td>A 65.14 ± 3.95</td>
<td>C 63.92 ± 5.64</td>
<td>B 64.72 ± 4.63</td>
<td>B 64.77 ± 4.49</td>
<td>B 64.97 ± 4.02</td>
<td>A 65.1 ± 4.11</td>
</tr>
<tr>
<td>Abdominal fat (%)</td>
<td>A 1.04 ± 0.09</td>
<td>A 1.11 ± 0.01</td>
<td>B 1.09 ± 0.01</td>
<td>C 1.05 ± 0.01</td>
<td>C 1.08 ± 0.08</td>
<td>C 1.05 ± 0.01</td>
</tr>
<tr>
<td>Liver weight (%) D 3.01 ± 0.08</td>
<td>A 3.89 ± 0.16</td>
<td>B 3.17 ± 0.07</td>
<td>B 3.10 ± 0.09</td>
<td>C 3.15 ± 0.09</td>
<td>C 3.05 ± 0.07</td>
<td></td>
</tr>
<tr>
<td>Heart weight (%)</td>
<td>D 0.51 ± 0.05</td>
<td>A 0.68 ± 0.01</td>
<td>B 0.60 ± 0.08</td>
<td>B 0.60 ± 0.09</td>
<td>B 0.58 ± 0.08</td>
<td>C 0.54 ± 0.06</td>
</tr>
<tr>
<td>Spleen weight (%)</td>
<td>D 0.10 ± 0.003</td>
<td>A 0.28 ± 0.006</td>
<td>B 0.17 ± 0.005</td>
<td>A 0.16 ± 0.005</td>
<td>C 0.15 ± 0.004</td>
<td>C 0.12 ± 0.004</td>
</tr>
<tr>
<td>Gizzard weight (%)</td>
<td>D 2.60 ± 0.01</td>
<td>A 3.03 ± 0.03</td>
<td>B 2.84 ± 0.02</td>
<td>B 2.79 ± 0.02</td>
<td>C 2.81 ± 0.02</td>
<td>C 2.66 ± 0.02</td>
</tr>
</tbody>
</table>

Laver seemed to be the target organ in aflatoxicosis. Hepatic hypertrophy following toxin administration appeared to be caused primarily by increased fat content in the organ (15). Mashaly et al. (9) reported that aflatoxin feeding at 50 μg/kg diet resulted in a significant decline in body and liver weights, rate of liver protein and RNA synthesis, and muscle RNA synthesis. Brown and Abrams (4) observed that a severe decline in plasma proteins on feeding aflatoxin B1 to chickens and ducklings was due to the suppression of liver protein synthesis as a consequence of mitochondrial injury and the lowered rate of ATP synthesis. Huff et al. (8) also noted that aflatoxin treatment significantly (p < 0.05) decreased body weight and weight gain; increased the relative weight of the spleen, liver, proventriculus, gizzard, heart, and kidney; and induced hepatic hyperplasia. Reddy et al. (15) found that with the increase of the level of aflatoxin, liver kidney, spleen, gizzard and pancreas showed an increase in weight with respective threshold doses of 0.30, 0.75, 1.50 and 4.00 ppm, while burns of fabricius regressed at 1.25 ppm. Smith and Hamilton (19) demonstrated that graded doses of aflatoxin (1.25, 2.5, 5.0 and 10.0 ppm) incorporated into the feed of broiler chickens resulted in a decreased growth rate, an enlarged liver, spleen, and pancreas and a regressed bursa of Fabricius. However, analysis of the liver showed that lymphocytes accounted for 60% of the dry weight increase (19).
The finding that licorice extract can suppress the detrimental effects of aflatoxin on liver function is explained by the fact that licorice root is used to help prevent and treat chronic hepatitis (liver inflammation). In one study of Japanese patients with hepatitis C, those receiving intravenous treatment with glycyrhrizin for an average of 10 years were significantly less likely to develop liver cancer and cirrhosis (progressive liver failure) (21). In a second study of 57 patients with hepatitis C, glycyrhrizin (in dose ranging from 30 to 240 mg/d) significantly improved liver function after only one month. These effects diminished after glycyrhrizin treatment was discontinued; however (1). Fujikawa et al. (6) reported that licorice both protects the liver and promotes healing of this vital organ. The herb's anti-inflammatory properties help calm hepatitis-associated liver inflammation. Licorice also fights the virus and toxins commonly responsible for hepatitis, and supplies valuable antioxidant compounds that help maintain the overall health of liver and certain vital organs. However, glycyrhrizin may protect liver and other vital organs such as heart, spleen, and kidney from being damaged by oxidants. Too many oxidants can harm healthy cells and cause inflammation. Licorice root traditionally supports the respiratory and gastrointestinal systems, liver, heart, and spleen (22).

It was concluded from this study that licorice extract especially at level of 450 mg/kg of diet can influence the severity of aflatoxicosis in broiler chickens and may be helpful in the control and prevention of this economically important disease.

REFERENCES
18-Shibata, S. A. 2000. Drug over the millennia: Pharmacognosy, chemistry,
and pharmacology of licorice. [Review].
Yakugaku Zasshi. 120(10):849–862.
Aliatotoxicosis in the broiler chicken.
20-Utsunomia, T., M. K. Kobayashi, D. N.
Hemdon, R. B. Pollard and F. Suzuki.
1999. Effects of glycyrrhizin, an active
component of licorice root, on Candida
albicans infection in thermally injured
21-Var. Rossam, T. G., A. G. Vullo, W. C.
Hop, J. T. Brouwer, H. G. Nistters and S.
W. Schalm. 1999. Intravenous
glycyrrhizin for the treatment of chronic
hepatitis C: a double-blind, randomized,
placebo-controlled phase I/II. J.
22-Vaya, J., P. A. Belinsky, M. Aviram.
1997. Antioxidant constituents from
licorice roots: isolation, structure
elucidation and antioxidative capacity
Med. 23(2):302–313.