تهور بينة الغابات على منحدرات جبال السروات

د. أحمد سعيد سعد
تدهور بيئة الغابات على منحدرات جبال السروات

الملخص

البيئة النباتية على منحدرات جبال السروات تتأثر الإنسان وإجراح التربة مشكلتان تدهور معروفة ومنتشرتان في المملكة العربية السعودية وخاصة في جنوب غرب المملكة. فاستخدام الإنسان غير الراشد لموارد البيئة من قطع الأشجار كوقود أو بناء البيوت أو الرعي الجائر أدى إلى تدهور البيئة وإجراح التربة. وقد لوحظت هذه التأثيرات منذ مدة طويلة وخاصة على المناطق المكشوفة من الغطاء النباتي، بينما حافظت المناطق المحمية على طبيعتها السابقة. كنافة النباتات تؤدي إلى حفظ التربة من الاستخدام والرجوع إلى الأشجار. وقد حذرت هذه الدراسة إلى فهم تدهور البيئة على سفوح غرب جبال السروات. حيث تم اختيار غابة الزرائب بمحلة الباحية لمعرفة دور النبات في حماية التربة من العواصف المطرية، والتي كثيرا ما تجرف التربة مما يؤدي إلى تدهور النباتات الكلية للبيئة الطبيعية. ومن أهم النتائج التي تم التوصل إليها أن متوسط حجم حبيبات التربة في المنطقة المكشوفة أقل من متوسط حجم الحبيبات في المنطقة المكشوفة، وتشير الحろうة في المنطقة المكشوفة لخضاب سفح الجبل بينما في السفح المحمي عشوائي. كذلك طبوعغرافية السفح المحمي أعم من طبوعغرافية السفح المكشوف، ويتميز السفح المحمي عن السفح المكشوف بكثافة وتنوع النباتات.
Deterioration of Forest Environment on As-Sarawat Mountain Slopes

Dr. Ahmed Said Sadah

Abstract

Human impacts on the environment, such as soil degradation and desertification, are widespread in Saudi Arabia particularly in As-Srawat mountains slopes of the south-west of the Kingdom of Saudi Arabia. These impacts caused by humans have long been recognized and can clearly be seen on land not protected by the hima preservation system. In unprotected areas the loss of a protective plant cover of trees is a primary causal factor leading to soil erosion. Formerly, the hima system of land management provided some protection from these hazards by controlling the removal of vegetation by human.

The purpose of the paper is to understand the environmental degradation of an area on the As-Sarwat mountain slopes where both hima and non-hima protection exists.

The present study examines the soil erosion at two contrasting sites chosen to examine the role of vegetation in providing some protection to the soil from the occasional intense rain storms which affect the area. One site was located on the edge of the forest where most of the trees and shrubs have been removed for fuel and building material. A second site was chosen inside the protected forest where there has so far been relatively little disturbance and the vegetation canopy provided quite conservation of soil cover. It was found that the soil particle size was finer in the protected area as compared to open sites where raindrop impact and overland flow had removed the fines and also reoriented the surface clasts such that their long axes were parallel or sub-parallel to the slope while in protected area the surface clasts were random. In the protected area the vegetation was denser and greenish than open area, and the slopes smoother as compared to the slope of the unprotected area.
المقدمة

معظم المفردات الواقعة في جبال السروت، والتي يصبحها قدر من الأطراف يسمح باستمرار، مغطاة بالغابات، وذلك ليس بعيداً بل في الماضي القريب. فكبار السن من أهل المنطقة لازالوا يذكرون و يصفون ما كانت عليه الطبيعة سابقاً عندما كانوا صغاراً، و ما حل بها حديثاً. إن هناك العديد من الشواهد على ما تناول الأجداد والأباء التي تدعم ما ذكرته. فتدخل الإنسان في البيئة والإضرار بها أدى إلى اختفاء معظم هذه الغابات. وجذور الأشجار لازالت تشهد على ذلك، والتي تتشر في أراضي و سفوح جوانا كانت يوماً مكسوة بالغابات. لقد فهم سكان جبال السروت بيئة جيداً و حاولوا وضع ضوابط عرفية لاستخدام الغابات وقطع الأشجار الحضرية واستخدامها للفوائد العامة كبناء المساجد أو البيوت المهمة، وينمو بالمجموعة العديد من الأشجار أكثرها Juniprerus procera. (Hochst. Ex Endl. (j. excelsa)

تشار العذر Conta. وذهذة الشجرة تنمو ببطء وتحمل العطش ودائمة الخضر، وإعادة زراعتها في الوقت الحاضر صعبة ومكلفة وذلك لتدورة الأنبوب وطول المدة التي تحتاجها للنمو (شكل 1). وتعتبر بيئة السفوح الجبلية من أهم الموضوعات التي تشمل الباحثين وخاصة في المناطق الجافة وشبه الجافة والتي تميز بفجائية المطر وغرائزه إضافة إلى قلة الغطاء النباتي. و الإخلاء مثل هذه البيئة المهيئة يزيد من إجراء التربة التي تعود العامل الرئيسي لنمو النبات. إن قضية البيئة و ما تعاني من تدهور واستمرار وسواء استخدام أصبحت من القضايا الملحة في عالمنا المعاصر بعد أن وصلت الأمور إلى وضع حرج أصبح يخشى مع استمراره إلى حدود مشكلات بيئية لا طاقة للشريرها بها. إذ أن الكثير من السلوكيات غير البيئية ألغت أكلاً بيئة جبال السروت جعل من الصعب إصلاحها أو تأديتها. بينما أدرك العلم الغربي منذ السبعينات من هذا القرن أن حماية البيئة وحياتها مهمة جداً عندما طرحت فكرة "تقويم المئاد البيئي" Environmental Impact Assessment عند استغلال موارد البيئة. يعني هذا المفهوم ضرورة تقييم تأثير أي مشروع على البيئة. فإذا تبين أن له تأثير ضار بعناصر البيئة يتم تعديله لتفادي هذا الضرر، وإذا لم يتحقق ذلك يلغى المشروع من منطلق أن المحافظة على موارد البيئة مقدمة ومفضلة على المنطقة الاقتصادية التي كبرنا ما تكون مؤقتة. فالمحافظة على البيئة من المقومات الأساسية والضرورية لإيجاد مشاريع التنمية واستمرارها. ويلعب الغطاء النباتي دوراً مهمًّا في اصطدام الرطوبة من الغلاف الجوي وخاصة من السحب التي ترصدهم
لاستخدامها في بناء البيوت واستخدامها كوقود وخاصة في السابق، مما جعل التربة معرضة للعوامل والأمطار والهواء إضافةً إلى طبيعة السفوح الشديدة الأخبار مما يساعد على أجراة التربة الناعمة بواسطة

(Meyer, et al., 1975; Alberts et. al., 1980; 1983) ومن أهم عوامل التي تؤدي إلى تدهور البيئة الطبيعية :

المعاملات المناخية

تندفع الظروف المناخية دورةً أساسياً في تحديد كنافة وتوعية النباتات التي تنمو بصورة طبيعية في جميع مناطق المملكة ففي منطقة الدراسة حيث معدل الأمطار السنوي يصل إلى 77 ملم يسمح بنمو الأشجار. فسعة سقوط المطر وزاوية سقوط وحجم الفطيرة وشكلها عوامل مهمة في الجرو (Nearing and Bradford, 1986; Barry et al., 1991) وصيق الجروح التربة نتيجة تأثير اصطدام قطرات المطر بالتربة وتوصيلها إلى مادة تشرح تصنيف التربة على السفوح نتيجة تأثير قطرات المطر (Hairsine and Rose, 1991). وتكمن أهمية النباتات وذورها في الحد كثيراً من الجروح التربة وخاصة في العواصف المطرية (Dunne and Black, 1970; Anderson and Burr, 1978)

كما أشارت العديد من الدراسات إلى أهمية النباتات في تثبيت التربة، فالنباتات له تأثير مباشر في الحد من الجروح التربة، حيث

السيال السروات، حيث تتكاثف على أوراق الشجر مما يؤدي إلى زيادة كمية الرطوبة في التربة وخاصة في التربة Hvطاعة في ظل الشجر. فرطوية التربة مهمة جداً في الحفاظ على التربة عن الانتهاء عند حدوث الفيضانات لأنها تؤدي إلى تاسك التربة. وظل وكتافة الغطاء النباتي يلعب الأشجار قافلاً بكمية تبخر الرطوبة من التربة (owe, et al., 1987; Barry et al., 1991)

وقد روطبة التربة العليا والسفلى من عملية الإجراف التربة السطحة (Western, et al., 1998). والأشجار لها دور كبير في الحفاظ على التربة من الإجراف نتيجة اصطدام قطرات الماء بالتربة. وقد درس هذا من قبل (Moezerson and pooly, 1979; Person and Savat, 1981; Moss and Green, 1983). وجد أن هناك علاقة بين قطرات المطر والجراف التربة، ولا يوجد هناك دراسات حقلية تقريبية تبين الوضع الراهن على سفوح جبال السروات فيما عدا (Sadah and Hajer, 1996) وهناك بعض الأبحاث التي أشارت إلى العلاقة بين النباتات والجروح في المملكة العربية السعودية مثل: (Abulfath, 1984; Draz, 1965; El-gohary et al., Hajer, 1987; Mirrah, 1990)

. 1993)

لقد وصل الجروح التربة على السفوح المكشوفة إلى مرحلة خطيرة، وهذا يعود إلى السلوك الخاطئ وقطع الأشجار غير المنظم.
النباتات تفتتحها من الأجراف ما يحدث في الفلبين، حيث التربة تنفجر بعد الحصد لفترة محدودة حتى يعود النباتات مرة أخرى (NCR, 1991).

- عدم وجود النباتات يؤدي إلى الأجراف التربة من سفوح الجبال إلى المرتفعات الزراعية مما يؤدي إلى تسبل التربة الخشنة في هذه المزارع. بينما التربة الصالحة للزراعة تنفجر بعدة هناك هذه المزارع مما أدى كذلك إلى تدهور المدرجات الزراعية وعدم صلاحيتها للزراعة أو تدني مستوى إنتاجتها.

بينما وجود النباتات يؤدي إلى إيجابيات كثيرة منها:

1 - النباتات تحيد من التدفق الضائع للفيضانات والأمطار. عندما تنتقل الأمطار بل وحده من ارتفاع قطرات المطر على التربة، وعدم وجوده يؤدي إلى الأجراف التربة مما يؤدي إلى سرعة التدفق مما يشكل سببًا جارفًا قد يؤدي إلى كوارث مثل تدمير المزارع في الأودية والمرتفعات الزراعية، فسرعة سقوط المطر وزاوية سقوطه وحجم قطرته وشكلها عامل مهم في إجراف التربة خاصة التربة غير المططة (بالنباتات، 1986; 987; Barry et al., 1991).

هيرسين وروز وصفوا اجراف التربة نتيجة تأثير اصطدام قطرات المطر بالتر钿 ووصولا إلى معاودة تشير تصنيف التربة على السفوح (Hairsine and Rose, 1991). وحتى لو كان هناك عاصفة يشكل مصايد للتر钿 والمعادن وتدبيتها بشبكة جذوره، أحيانًا ينخفض سطح التربة، وذلك يحافظ على رطوبة التربة مما يجعلها مماسكة (Abulfatih, 1984; abulfatih, 1989; Draz, 1965; Sadah ad Hajer, 1996).

- الإنسان

هذا عامل هام ومؤثر جداً على النباتات قطع الأشجار واستخدامها كوقود أو في بناء البيوت أدى إلى اختفاء معظم الأشجار في معظم المناطق، مما أن المنطقة تشتهي بزراعة العنب ومرودود الاقتصاد جيد ويجتاز إلى أغصان الأشجار لرفعه عن الأرض فقد قطع كثير من أشجار العنب لهذا الغرض وذلك لمقاومتها للساقلا من التربة حيث تثبت في الأرض ويفضب بعضها في المطاط وينشب عليها أغصان العنب. ووجود المواصلات وشق الطرق وصولها إلى أماكن بعيدة سهلت قطع الأشجار وبيعها في السوق كحطب أو فحم، وبعض من يمارس هذه الأعمال يقومون بقطع الأشجار الخضراء وبعد جفافها يصنع منها الفحم لبيع في السوق.

واختفاء النباتات يؤدي إلى نتائج سلبية منها:

1 - إجراف التربة وتعريبة سفوح جبال السراوي، من هذا الغطاء الرقيق ستصبح في النهاية صخور جبراء من النباتات المتربة حيث إن إجراف التربة من الأراضي المكشوفة يعادل 25 مرة إجراف التربة المغطاة بالنباتات (Presbiterno et al., 1995).
5- ظل الشجرة يحد من أشعة الشمس التي تؤدي إلى تبخن الرطوبة من التربة وخاصة في فصل الصيف.
6- وجود الغابات يساهم في خفض الغازات الدفيئة وزيادة التنوع البيولوجي.

ويمكن من خلال النتائج التي تم الوصول إليها لتحليل العينات التي جمعت من منطقة الدراسة، وتشجع علاقة قوية ومتبادلة بين تدهور النباتات والرطوبة، حيث إن كل منهما يؤثر في الآخر. ومقارنة النتائج التي يتم الحصول إليها في كلا السدروب (المغطى بالأجرام والمكشوف) يصل إلى فهم أفضل عن الواقع الموجود حاليًا على هذه السفوح، ومن ثم اقتراح الحلول والتدابير التي تساعد في الحفاظ على مقومات البيئة.

مطرية فالتربة وذورها تجد كثيراً من (Dunne and Black, 1970; Anderson and Burr, 1978)
2- عندما تصبح النجوم للسحابة السحابية.

3- وجود النبات يودي إلى زيادة المخزون المائي الجوفي مما يؤدي إلى تدفق النباتية عدة أطول، وكذلك ما يمكن أن يبدأ بالرطوبة، بينما عندما يوجد النباتات والأشجار يودي إلى تدفق سريعة للمياه، ولا يستفيد المخزون الجوفي من هذه المياه (Troeh et al., 1991; Amir, 1996).
4- أهمية جذور النباتات لحفظ الماء على التربة من الأزهار حيث تشكل شبكة لحيف كثيرة تتمتع بها من التدفق الصافي.

شكل (1) من طية الرياح شمالي غرب مدينة الباحة.
منطقة الدراسة

تقع منطقة الدراسة على خط طول ٢٠°٥٠ً شرقًا وخط عرض ١٨°٠٠ً شماليًا غرب جبال السروات، كل شماليًا غرب مدينة الباجة (٢٠)، ومنشآت جبال السروات تقع في نطاق المدار شبه الجاف غرب شبه الجزيرة العربية وتبين من خليج العقبة شماليًا حتى مضيق باب المنبد جنوبيًا، وهي جبال انكسارية تكون نتيجة لتكون منخفض السحاب الأحمر وتتميز سفوحها الغربية بالغبار الشديد وخاصة كلما أظهرًا جنوبًا وتختلف النباتات من حيث النوعية والكثافة من الشمال إلى الجنوب ومن الشرق إلى الغرب. كمية الأمطار حوالي ٤٧٧ ملم سنوياً وتبخر ٩٠٠م م ورطوبة نسبة حوالي ٤٧%٠٢ً ودرجة حرارة تتراوح بين ٢٩ -٢١ درجة مئوية (١٩٨٩) مما يسمح بنمو الغابات وهي أشجار متنوعة مثل العرعر والزبتيون البري والضرر والطاجح (Juniperus procera، Anagris foetida، Olia. Europaea، Acacia)، وتميز مناخ المنطقة بالتدورات المناخية الصغرى حيث تتوفر بها كميات جيدة من الأمطار في عدد من السنوات وقد ينتج المطر في سنوات أخرى مما يخلق الضرر بالنباتات والأشجار ولكن الأشجار والنباتات على جبال السروات تأقلمت مع هذه الانتهاكات المناخية. وتميز سفوح منطقة الدراسة بل كل سفوح جبال السروات بغطاء رقيق من التربة مما يجعلها عرضة للاجراف خاصة إذا كان الغطاء النباتي غير كاف لحماية التربة من الأجراف. وقد اختار الباحث غابة الزراب، والسفوغ المجاور لغابة الزراب والتي قطعت أشجارها وتدورت مقومات البيئة بها.

شكل (٢) خريطة نبين موقع الدراسة شمال غرب مدينة الباجة.

منهج الدراسة

بما أن النبات عاملاً هاماً في حماية التربة من الأجراف والنباتات لا ينتموا من دون وجود التربة ومن خلال هذه العلاقة القوية قام الباحث بتجميع عينات من التربة وحصر أنواع النباتات وقياس طبوغرافيا ونسبي الحجازة في السفح المفتوح والسفح المكشوف وخليلها، ومن ثم التوصل إلى النتائج التي

٩٧
تدور بيئة الغابات على منحدرات جبال السروات

3- من الصعب تصنيف الأحجام التي تقل عن 9 فاي حتى 14 فاي عن طريق الهيدرومتر لأن كل عينة تستغرق أكثر من أسبوع. ولذلك رسم اتخاذ خطى وفقاً للطريقة المعارية التي أوصى بها (1965) ولو تركة من دون تصنيف ستكون نتائج التحليل الإحصائي غير صحيحة.

4- طبقت طريقة (1952) في التحليل الإحصائي لأحجام الجيوب، وهذه الطريقة كان من الصعب استخدامها سابقاً حتى شاع استخدام الكمبيوتر وهي طريقة أفضل من الطرق الأخرى حيث إنها تأخذ في حسابها كل العينة بينما الطرق الأخرى تتجاهل 5% من النسبة المتوبة لكل عينة جدول (1).

تودي إلى معرفة الأضرار التي حدثت ببيئة وذلك من خلال اختلافات بين نتائج السفح المغطى بالغابات والسفح المكسوفة.

أساليب جمع البيانات وتحليلها

أولاً- الأزمة:

تحليل حجم حبيبات التربة موضوع كبير أثار إليه عدد كبير من الأبحاث حصت في وقت مقدم من (1965)، ولكي نصل إلى فهم أفضل عن التربة على كلا السفحين، وكيف تختلف أو تشابه هذه التربة على السفحين التي جمعت منهما العينات، فقد جمع 83 عينة من أربعة مقاطع، مقطعين من السفح المغطى بالغابات ومقطعين من السفح المكسوفة. حجم كل عينة كان موفقاً للمعيار الذي وضع مقبولاً للمعيار الذي وضع من قبل British Institute [BS 812,1975; BS3681 (1975)]، ففصل بين كل عينة وأخرى عشرون مترًا. هذه العينات المنظمة نظامًا جيدًا لنطبق فاذاً الابتداعات على البيانات. وقد حلت البيانات في العمل كالنامي:

1- خلت عينات التربة من 2 إلى 4 فاي (ماتصق 5 فاي لمدة ثلاثون دقيقة (Phi) حسب الطريقة الموصوفة في (1965).
2- الأحجام التي تقل عن 4 فاي صنفت باستخدام الهيدرومتر حتى 9 فاي بمقدار نصف فاي أيضاً وفقاً لطريقة (Wadel, 1936).
التدهور البيئي للغابات على مصاعد جبال السروات

| السفح المكشوف | السفح المحمي | المتوسط | الحافة الغابات | الوسط
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>أ</td>
<td>ب</td>
<td>أ</td>
<td>ب</td>
<td></td>
</tr>
<tr>
<td>1.60</td>
<td>1.55</td>
<td>2.06</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>0.11</td>
<td>0.07</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>1.65</td>
<td>2.12</td>
<td>2.03</td>
<td></td>
</tr>
</tbody>
</table>

الأخبر الغابات (التصنيف)

<table>
<thead>
<tr>
<th>التنبات</th>
<th>الانتواد</th>
<th>التفرط</th>
<th>المدى</th>
<th>أصغر قيمة</th>
<th>أكبر قيمة</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.62</td>
<td>1.5</td>
<td>3.32</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.28</td>
<td>0.24</td>
<td>0.11</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.19</td>
<td>-1.17</td>
<td>1.02</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.18</td>
<td>0.02</td>
<td>-0.96</td>
<td>-0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.74</td>
<td>1.62</td>
<td>1.31</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.72</td>
<td>0.78</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.46</td>
<td>2.40</td>
<td>2.55</td>
<td>2.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

عدد العينات | 21 | 20 | 21 | 21 |

جدول (2) خصائص التربة في كلا السفينين
5- استخدم الاعتداء الخطي للمتوسط الحسابي لأحجام العينات في كل مقطع لمعرفة اختلاف حجم الحبيبات على طول المقطع والاختلاف بين المقطعين شكل (3، 4).

شكل (3) متوسط حجم الحبيبات للرسومات البيانية

الاعتداء الخطي البسيط لمتوسط حجم البيانات لمقطع (أ) في كلا السهفين

شكل (4) متوسط حجم الحبيبات للرسومات البيانية

الاعتداء الخطي البسيط لمتوسط حجم البيانات لمقطع (ب) في كلا السهفين
ثانيًا - الصور الفوتوغرافية:

1 - انطلقت صورة فوتوغرافية رأسية (Quadrate) مساحتها 0.5 x 0.5 م و مقاسماً إلى مربعات صغيرة (100 سم²)، وفقاً للطريقة الواردة في (Cain، 1962)، وذلك لمعرفة تجلي الحجرة على الاتجاه. هذا المربع كان بزاوية 0° - 180° عمودياً على اتجاه الخروج.

2 - قيست زاوية الحجارة نسبةً على طول الحجر من الصور الفوتوغرافية بعد تكبيرها على ورق الرسم البيني. هذه القياسات صنفت إلى تسعة فئات طول كل فئة 20° جدول (2).

جدول (2): نتائج قياس اتجاه الحجرة من أعلى السفح حتى النهاية (D)

<table>
<thead>
<tr>
<th>الرقم بدالة</th>
<th>السفح المشاهد</th>
<th>السفح الفظي بالفظيات</th>
<th>المقطع الثاني</th>
<th>المقطع الأول</th>
<th>المقطع الثاني</th>
<th>المقطع الأول</th>
<th>المقطع الثاني</th>
<th>المقطع الأول</th>
<th>المقطع الثاني</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
<td>82</td>
<td>61</td>
<td>13</td>
<td>124</td>
<td>18</td>
<td>33</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>82</td>
<td>95</td>
<td>84</td>
<td>15</td>
<td>69</td>
<td>25</td>
<td>135</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>115</td>
<td>92</td>
<td>17</td>
<td>78</td>
<td>24</td>
<td>144</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>78</td>
<td>87</td>
<td>102</td>
<td>24</td>
<td>152</td>
<td>31</td>
<td>24</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>83</td>
<td>96</td>
<td>74</td>
<td>36</td>
<td>35</td>
<td>21</td>
<td>51</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>87</td>
<td>121</td>
<td>16</td>
<td>86</td>
<td>26</td>
<td>105</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>78</td>
<td>92</td>
<td>93</td>
<td>21</td>
<td>5</td>
<td>10</td>
<td>21</td>
<td>-7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>109</td>
<td>89</td>
<td>17</td>
<td>64</td>
<td>21</td>
<td>171</td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>77</td>
<td>58</td>
<td>104</td>
<td>20</td>
<td>95</td>
<td>28</td>
<td>112</td>
<td>-9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>84</td>
<td>87</td>
<td>97</td>
<td>26</td>
<td>91</td>
<td>31</td>
<td>114</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>91</td>
<td>94</td>
<td>94</td>
<td>23</td>
<td>117</td>
<td>24</td>
<td>24</td>
<td>-11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>82</td>
<td>105</td>
<td>81</td>
<td>14</td>
<td>12</td>
<td>19</td>
<td>35</td>
<td>-12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>87</td>
<td>87</td>
<td>98</td>
<td>12</td>
<td>6</td>
<td>24</td>
<td>111</td>
<td>-13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>86</td>
<td>86</td>
<td>108</td>
<td>41</td>
<td>142</td>
<td>31</td>
<td>132</td>
<td>-14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>85</td>
<td>94</td>
<td>114</td>
<td>22</td>
<td>119</td>
<td>58</td>
<td>45</td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>78</td>
<td>106</td>
<td>79</td>
<td>19</td>
<td>23</td>
<td>15</td>
<td>124</td>
<td>-16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>90</td>
<td>97</td>
<td>91</td>
<td>24</td>
<td>20</td>
<td>17</td>
<td>154</td>
<td>-17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>86</td>
<td>86</td>
<td>103</td>
<td>28</td>
<td>146</td>
<td>24</td>
<td>168</td>
<td>-18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>85</td>
<td>78</td>
<td>96</td>
<td>11</td>
<td>14</td>
<td>31</td>
<td>75</td>
<td>-19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>73</td>
<td>109</td>
<td>87</td>
<td>24</td>
<td>162</td>
<td>17</td>
<td>114</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>72</td>
<td>82</td>
<td>94</td>
<td>17</td>
<td>12</td>
<td>24</td>
<td>248</td>
<td>-21</td>
<td></td>
</tr>
</tbody>
</table>

ملحوظة: العينات من أعلى السفح حتى أسفله.
ثانياً - زوايا الانحدار

1- قيست زوايا الانحدار عند كل ناية أمطار على كلا السفنين باستخدام اليوهيدليت وذلك لمعرفة طبوغرافية السفح.

2- استخدمت طريقة (1972م، Young.) في تحصيل زوايا الانحدار التي قيست على السفنين ورسم الانحدار الحضي البسيط واللوغاريتي، وذلك لمعرفة نمودان السفح أو خشونته، وخلت هناك فرق بين السفنين المحمي والمقتطع للرعي تسمت شكل (5، 6) البرنامج الإحصائي Minitab باستخدام في المحايل الإحصائي بينما استخدم برنامج Excel في الرسومات.

شكل (6) نموذج الانحدار الحضي واللوغاريتي لقطع السفح المحمي.

مقطع الانحدار

الانحدار الوغاريتي

الانحدار البسيط

R² = 0.57

R² = 0.98
تم دراسة الفصائل النباتية وتصنيفها ووضعها في قوائم كما بين ذلك جدول (3). ووجد أن السفح المحمي تغطي أنواع من الأشجار الدائمة الخضرة أكثرها كثافة شجر العرع (Juniperus procera Hochst) حيث يشكل نسبة كبيرة قد تزيد عن 80% وعموماً شجر العرع معروف بتحمله للجفاف ومقاومته للتحلل والتلف حيث تلفق به البيوض ويطغى بالتراب ويستخدم في الآبار وتر علبه مياه السنين دون أن يتأثر وذلك جذبه مطلوب جودته ومقاومته للناكل.

شكل (2) فوائد الانحدار الحقيقي واللوغاريتمي لقطع السفح المفتوح للرعي.

رابعاً - النباتات

ملاحظات:

- دراسة الفصائل النباتية وتجميعها ووضعها في قوائم كما بين ذلك جدول (3).
- وجد أن السفح المحمي يغطي أنواع من الأشجار الدائمة الخضراء أكثرها كثافة شجر العرع (Juniperus procera Hochst) حيث يشكل نسبة كبيرة قد تزيد عن 80% وعموماً شجر العرع معروف بتحمله للجفاف ومقاومته للتحلل والتهيج حيث تلفق به البيوض ويطغى بالتراب ويستخدم في الآبار وتر علبه مياه السنين دون أن يتأثر وذلك جذبه مطلوب جودته ومقاومته للناكل.
جدول (3) النباتات الموجودة في كلا السفينتين

<table>
<thead>
<tr>
<th>الأنواع النباتية</th>
<th>السفح المغطي</th>
<th>السفح المكشوف</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus procera Hochst. Ex Endl. (j. excelsa)</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>Acacia asak (Forssk.) Willd</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Olia. europaea ssp. Cuspidata (Wall. Ex G. Don)</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>Anagyris foetida L.</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Acacia origena R. Br. Ex Hunde (A nigirii)</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Grasses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aristida sp</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Cenchrus ciliaris L.</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>Cymbopogon schoenanthus (L.) Spreng.</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Cynodon dactylon (L.) Pers</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>Eragrostis pliosa (L.)p. Beauv.</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>Themeda triandra Forssk</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>Herbs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphodelus fistulosus L.</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Blepharis ciliaris (L.) B.L.Burtt</td>
<td>---</td>
<td>***</td>
</tr>
<tr>
<td>Caylusea hexagyna (Forss k.) M.L. Green</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>Centaurea sinaica DC.</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>Cyperus conglomeratus Rottb</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>Echinops sheilae Kit Tan (E. sp.)</td>
<td>---</td>
<td>***</td>
</tr>
<tr>
<td>Echium longifolium Del.</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Erodium sp.</td>
<td>***</td>
<td>---</td>
</tr>
<tr>
<td>نبات غير موجودة</td>
<td>النباتات موجودة</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نبات</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagonia indica Burm.f.</td>
<td>***</td>
</tr>
<tr>
<td>Farsetia ramosissima Hochst. ex Boiss</td>
<td>***</td>
</tr>
<tr>
<td>Gypsophila capillaris (Forssk.) C.Chr (G.antari, part)</td>
<td>***</td>
</tr>
<tr>
<td>Launaea capitata (Spreug.) Dandy</td>
<td>***</td>
</tr>
<tr>
<td>Lavandula pubescens Decne</td>
<td>***</td>
</tr>
<tr>
<td>Lotus arabicus L.</td>
<td>***</td>
</tr>
<tr>
<td>Micromeria biflora (Ham) (Benth. Ssp. Arabica K. Walth.</td>
<td>***</td>
</tr>
<tr>
<td>Npeta deflersigana Schweinf. ex Hedge</td>
<td>***</td>
</tr>
<tr>
<td>Onopordon heteracanthum C. A. Mey.</td>
<td>***</td>
</tr>
<tr>
<td>Osteospermum vaillantii (Decne.) Norl.</td>
<td>***</td>
</tr>
<tr>
<td>Polygala erioptera DC</td>
<td>***</td>
</tr>
<tr>
<td>Rumex vesicarius L.</td>
<td>***</td>
</tr>
<tr>
<td>Pennisetum Divisum</td>
<td>***</td>
</tr>
<tr>
<td>Pistacia cf. Khinjuk Stoks</td>
<td>***</td>
</tr>
<tr>
<td>Francoeuria crispa (Forssk) Cass.</td>
<td>***</td>
</tr>
<tr>
<td>Lavandula dentate L.</td>
<td>***</td>
</tr>
<tr>
<td>Psiadia punculata DC.</td>
<td>***</td>
</tr>
<tr>
<td>Solanum incanum L.</td>
<td>***</td>
</tr>
<tr>
<td>Rumex nervosus Vahl</td>
<td>***</td>
</tr>
</tbody>
</table>
لملاحظة الأشجار على السحج المكشوف جدول (1)، والادخادر الحيتي يوضح أن الرواسب يقل حجمه من أعلى السحج إلى أداء شكل (3، 4).

النتائج والمناقشة:

من خلال النتائج التي تم التوصل إليها، تبين أن البيئة في السحج المكشوف قد تضررت سواء في النباتات أو النبتة أو طبوغرافية السحج، وممكن مشاهدتها كذلك عن طريق الملاحظة الميدانية، والسبب يعود إلى استخدام الإنسان الغير واضح لموارد البيئة مما أدى إلى تدهور البيئة، سواء كانت نبتة أو نبات، فتهدر النبات يؤدي إلى تدهور النباتات، حيث إن هناك علاقة قوية ومتباينة بينهما.

وكانت النتائج التي تم التوصل إليها كالألي:

**تبيين من خلال النتائج التي تم التوصل إليها أن بيئات السحج المكشوف قد خلفت بها بعض الاضرار التي أثرت على مقوماتها النباتية وتراثها كذلك شملت طبوغرافية السحج. وهذا يدعم المؤشرات الأولية التي تم التوصل إليها عن طريق الملاحظة الميدانية، والسبب يعود إلى استخدام الإنسان الغير واضح لموارد البيئة.

وأهم النتائج التي تم التوصل إليها من خلال تحليل البيانات ما يلي:

الأولا - النقطة الحميمة

1 - حجم الحبيبات

أظهرت التحليلات الإحصائية أن التصنيف في المنطقة المكشوف أفضل من المنطقة المحمية، حيث بلغت قيمة الاعراض المعيار (تصنيف حبيبات النبتة) لحجم حبيبات النبتة في المقطع (أ) 1.05 وفائي بـ 1.02 فاي. ومتوسط حجم الحبيبات أكبر من متوسط حجم حبيبات في المنطقة المحمية، 1.55 فاي في سفح (أ) و 1.20 فاي في سفح (ب) جدول (2) والاخدار الحيتي

الثاني - المنطقة المكشوفة

**توضيح التحليل لحجم حبيبات النبتة أن التصنيف كيداً فقد بلغت قيمة الاعراض المعياري (تصنيف حبيبات النبتة) لحجم حبيبات النبتة في المقطع (أ) 3.02 فاي، بينما بلغت 2.37 فاي في المقطع (ب) ومتوسط حجم حبيبات النبتة 2.04 فاي في المقطع (أ) و 2.07 في المقطع (ب) وتشير النتائج أن حجم الحبيبات في السحج المكشوف أصغر من حجم

<table>
<thead>
<tr>
<th>جدول</th>
<th>السحج المكشوف</th>
<th>السحج المحمي</th>
</tr>
</thead>
<tbody>
<tr>
<td>حجم الحبيبات في السحج المكشوف</td>
<td>1.05 فاي في سفح (أ)</td>
<td>1.20 فاي في سفح (ب)</td>
</tr>
<tr>
<td>متوسط حجم حبيبات النبتة</td>
<td>1.55 فاي في سفح (أ)</td>
<td>1.20 فاي في سفح (ب)</td>
</tr>
</tbody>
</table>

الجدول الخامس عشر - العدد الأول - ذو الفقار 1443 هـ - يناير 1444 هـ
يوضح أن الرواسب كذلك يقل حجمها من أعلى السفع إلى أدنى في كلا السفينين بشكل (3.4).

2 - نسيج الحجارة
تشير النباتات التي استخلصت من الصور الفوتوغرافية جدول (3) إلى أن نسيج معظم الحجارة في السفح المكشوف معظمها موزعاً لاختصار السفح وهذا يدل على أن العمليات الهيدرولوجية في السفح المكشوف أكثر تأثيراً على نسيج الحجارة.

3 - طيغريفاة الأغادير
الاختبار النشط البسيط واللوغاريتمي يوضح خروج هذا السفح مقاومة بالسم المحمي حيث بلغت قيمة R^2 للإغادير البسيط 0.73 بالنسبة أغلبياً وكثافة وخضراء مقاومة بالسفح المحمي جدول (3).

4 - النباتات
أظهر السح لأنواع النباتين في السفح المكشوف أن النباتات فعلاً أصيبت بأضرار كبيرة نتيجة للاستخدام الغير راشد من قبل الإنسان، فالأشجار تكاد تكون معدومة في هذا السفح والنباتات أقل عددًا وكثافة وخضراء مقاومة بالسفح المحمي جدول (3).

من خلال تناول التحليلات السابقة توصل الباحث إلى ما يلي:

1 - متوسط حجم الحبيبات في كلا السفينين يقل من أعلى السفح إلى أدنى ومتوسط حجم الحبيبات في السفح المحمي أقل من متوسط حجم الحبيبات في السفح المفتوح للرجعي. وهذا يدل على أن الجراثين السطحي للماء وعدم وجود الأشجار في المنطقة المكشوفة أدى إلى جرح الرطبة الناعمة، بينما يقل تأثيره على المنطقة المغطاة بالأشجار وذلك بسبب النباتات التي تحد من اندفاع الماء وحماية الأشجار للزبدة من تأثير
شكل (7) مقطع (أ) السفح المحمي
رسم كنوري بين اختلاف حجم الحبيبات التي تقل عن 20 - من قمة السفح حتى أسفله.
تدهور بيئات الغابات على منحدرات جبال السروات

شكل (8) مقطع (ب) السفح المحمي
رسم كتوري بين اختلاف حجم الحبيبات التي تقل عن 0.2 - من قمة السفح حتى أسفله.
شكل (6) مقطع (أ) السفح المكشوف
رسم كتنيوري بين اختلاف حجم الحبيبات التي تقل عن 200 - من قمة السفح حتى أسفله.
شكّل (10) مقطع (ب) السفح المكشوف
رسم كنوري يبين اختلاف حجم الخبيبات التي تقل عن 2\(^0\) من قمة السفح حتى أسفله.
الوصية
من خلال النباتات التي تم الوصول إليها
في هذا البحث يوصى الباحث بما يلي:

١- تطبيق مثل هذه الدراسة على طول جبال السروات من شمالها إلى جنوبها ومن شرقها حتى غربها، وذلك لاختلاف الظروف المناخية وأنواع النباتات حتى تكون لدينا صورة واضحة عن الوضع الراهن لبيئة سفوح جبال السروات ومن ثم وضع الخطة المناسبة للحفاظ على البيئة وعلى غطاء التربة الرقيق المتكون على سفوح جبال السروات.

٢- تشجيع نتائج هذا البحث على زيادة المناطق الحمية حيث ستكون لها نتائج إيجابية على الحد من الجرحات التربية والحفاظ على البيئة.

٣- الدعوة إلى إعادة زراعة النباتات التي تفتقد مع مناخ هذه المنطقة بواسطة الجهات المسؤولة على الحفاظ على البيئة، وإعادة زراعة النباتات والأشجار التي يمكن أن تنمو على سفوح جبال السروات.

٤- انتخاب نوعيات من النباتات سريعة الإنبات وقوية البناء والتي تتمكن من منافسة النباتات غير السريعة النمو وتكون منافلة مع الحميم وفضل أن تكون ذات قيمة اقتصادية جيدة.

٥- وضع سياسة تربوية تعليمية وإعلانية متكاملة عبر المدارس والجامعات ووسائل الإعلام المرئية والمسموعة والمكتوبة ودور

العبادة تقوم على تنصير المجتمع بمختلف فناتها بأهمية قضايا البيئة بصورة عامة لنبين أهمية البيئة وطرق حمايتها.

٧- بناء قاعدة للمعلومات والبيانات تشمل كل النباتات وخصائص التربة وعناصر المناخ السائد في المنطقة، ودعوة المنظمات المتخصصة لتأسيس قاعدة بيانات للمعلومات البيئية، وحصر المختصين في علم البيئة المهتمين بها، وتشجع الاتصال والتواصل بينهم باستمرار ووسائل الاتصال الحديثة وشبكات المعلومات الإلكترونية.

٨- جرّد أعداد النباتات في الأحماض التقليدية من خلال معرفة متوسط النباتات للفترة المعمرة ونسبة الغطاء النباتي في الأحمام.

١٣- تشجع إقامة الائفات ومؤتمرات وورش العمل المتخصصة بتقسيمات وخاصة تلك التي تتعلق بالبيئة.

١٤- التعاون مع الجهات الدولية المتخصصة وبدقة خاصة برامج الأمم المتحدة للبيئة وبرامج الأمم المتحدة الإنسانية من أجل تنفيذ البرامج الهدف لتحسين الأوضاع البيئية في العالم مثل الدعم الذي حصل عليه شجرة اللحيب في المنطقة الجنوبية الغربية والتي تعتبر من الأشجار النادرة جداً ولم يبق منها إلا عدد محدود.

١٥- إقامة شبكات لإدارة الأفاق وتقديم الدعم لها ووضع استراتيجيات لكافحة الأفاق كجزء من خطط الإدارة، مما
دوراً هاماً في دورة الغذاء للنباتات، ومن أهم النتائج التي تم التوصل إليها جد أن متوسط حجم حبيبات التربة في السفح المحمي أصغر منها في السفح المكشوف، وتسليط الجدار في السفح المحمي على سطحه، بينما في السفح المكشوف موازية للسطح. أما طوراً فتسجل السفح المكشوف يبدأ أنت تنسى من السفح المحمي.

عموماً هذا البحث ينطلق على العلاقة الفائدة بين التربة والنباتات وأهميتها في الحفاظ على البيئة. وأن أي استخدام غير رأسد للبيئة يؤدي إلى كوارث بيئية من الصعب تقاسها خاصة في صفحات تتميز بشدة الأخبار وغمظة بطيقة من التربة.

المراجع

Scientific Publishing Center, King Abdulaziz University. Jeddah.

Draz, O. (1965). The “hema” system of range reserves in the Arabian Peninsula; its possibilities in range improvement and conservation projects in the Middle East, FAO, Roma, 11p.

Leyte, the Philippines. Soil Technol. 8, pp. 205-213.